x^2+14/5=27

Simple and best practice solution for x^2+14/5=27 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+14/5=27 equation:



x^2+14/5=27
We move all terms to the left:
x^2+14/5-(27)=0
determiningTheFunctionDomain x^2-27+14/5=0
We multiply all the terms by the denominator
x^2*5+14-27*5=0
We add all the numbers together, and all the variables
x^2*5-121=0
Wy multiply elements
5x^2-121=0
a = 5; b = 0; c = -121;
Δ = b2-4ac
Δ = 02-4·5·(-121)
Δ = 2420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2420}=\sqrt{484*5}=\sqrt{484}*\sqrt{5}=22\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-22\sqrt{5}}{2*5}=\frac{0-22\sqrt{5}}{10} =-\frac{22\sqrt{5}}{10} =-\frac{11\sqrt{5}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+22\sqrt{5}}{2*5}=\frac{0+22\sqrt{5}}{10} =\frac{22\sqrt{5}}{10} =\frac{11\sqrt{5}}{5} $

See similar equations:

| 4z-1=23 | | 2x+3=9x-11= | | 10x–23=29 | | 2⋅(x+1)+4=3⋅(x+4)−7 | | W3=w9 | | y-24=10 | | 3(u+7)=6u-3 | | -7(-4x-2)-2x=26x+14 | | 2x+3=9x-11x= | | -5(6v+2)=170 | | 2x-3+4x+5=x-1+3x+2 | | 6+9v=-93 | | 2(3v+8)=70= | | -150=5(7x+5) | | a=45*5/9 | | 4-10=7x-5 | | 6w+6=2w+10 | | -3(-4x+3)=-2(-6x+5) | | (3x+17)=(7x-39) | | -91=7(k-8)+7 | | -4x+20=9x-19 | | 2(7y-5)=-28+3 | | 4x+7=23* | | -2(8p+3+8=-94 | | 5=2w−3 | | -4m-6m=-8-8m-6m | | .5n-3=12 | | 3=x{3.3}3=3.3x | | 114=-6(5n+1) | | -7|j|+4=-73 | | -24+5/6k=6 | | -5x*18=9x-15 |

Equations solver categories